On the Product of Real Spectral Triples

نویسنده

  • F. J. Vanhecke
چکیده

The product of two real spectral triples {A1,H1,D1,J1, γ1} and {A2,H2,D2,J2(, γ2)}, the first of which is necessarily even, was defined by A.Connes [3] as {A,H,D,J (, γ)} given by A = A1 ⊗ A2, H = H1 ⊗ H2, D = D1 ⊗ Id2 + γ1 ⊗ D2, J = J1 ⊗ J2 and, in the even-even case, by γ = γ1⊗γ2. Generically it is assumed that the real structure J obeys the relations J 2 = ǫId, JD = ǫ ′DJ , J γ = ǫ ′′γJ , where the ǫ-sign table depends on the dimension n modulo 8 of the spectral triple. If both spectral triples obey Connes’ ǫ-sign table, it is seen that their product , defined in the straightforward way above, does not necessarily obey this ǫ-sign table. In this note, we propose an alternative definition of the product real structure such that the ǫ-sign table is also satisfied by the product. PACS numbers : 11.15.-q, 02.40.-k ;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral triples of weighted groups

We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.

متن کامل

The graded product of real spectral triples

Forming the product of two geometric spaces is one of the most basic operations in geometry, but in the spectral-triple formulation of non-commutative geometry, the standard prescription for taking the product of two real spectral triples is problematic: among other drawbacks, it is non-commutative, non-associative, does not transform properly under unitaries, and often fails to define a proper...

متن کامل

Asteroidal number for some product graphs

The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...

متن کامل

On the irreducible characters of Camina triples

The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N)  and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.  

متن کامل

Quantum Isometry Group for Spectral Triples with Real Structure

Given a spectral triple of compact type with a real structure in the sense of [Da̧browski L., J. Geom. Phys. 56 (2006), 86–107] (which is a modification of Connes’ original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999